
HI/OI

Uncl as

0305024-

k

NASA Technical Memorandum 4232

A Personal Computer-Based,

Multitasking Data

Acquisition System

Steven A. Bailey

Goddard Space Flight Center

Wallops Flight Facility

Wallops Island, Virginia

National Aeronautics and
Space Administration

Office of Management
Scientific and Technical
Information Division

1990

Summary

A multitasking, data acquisition system has been written to

simultaneously collect meteorological radar and telemetry
data from two sources. This system is based on the personal

computer (PC _) architecture. Data is collected via two

assynchronous serial ports and is deposited to disk. The

system is written in both the "C _ programming language and
assembler. It consists of three parts: a multitasking kernel

for data collection, a shell with pull down windows as user

interface, and a graphics processor for editing data and

creating coded messages. An explanation of both system

principles and program structure is presented.

Introduction

In use today are many systems used to track upper

atmospheric conditions. This knowledge can be used for

many things, including guidance information necessary for
sounding rockets. A system that integrates balloon
radiosonde and radar tracking information into one data set

currently exist. This system was written by Optimetrics, Inc.
of Ann Arbor, Michigan. It incorporates one of several

balloon radiosonde systems with a modified Enterprise

Electronics WF-100 radar. At present, the system works but

is not portable between sites. This is due to noncentralized
modifications to software, along with hardware changes and

additions. System documentation is scarce, and program

modularity is nonexistent.

The author's task was to make a more usable system. This

would involve rewriting a major portion of the original code

or rewriting the entire system. After some study, it was
decided to start from scratch. A complete new data system

would be written. The only restrictions were that it had to

run on any PC and data had to be gathered via assynchronous

serial ports. The net result must show graphical progress of
data collection with final creation of one of several

meteorological coded messages.

This paper describes all aspects of this new and improved

data system. System ideals and principles are examined.
Reasons for chosen design are explained. Program

flowcharts and detailed descriptions of program structure are

given. Finally, the creation of coded messages is explained
in full.

System Ideals

Many things must be considered to maintain this directive.
The most important of these are data rate and data medium.

A high data rate usually requires a special data medium to

ensure proper throughput. A low data rate can be maintained

with a simple data medium.

The data medium used for this system is assynchronous RS-

232. This is a simple medium to implement on most micro-

computers. Fortunately, any PC can be easily populated with

two such devices.

Principles

This data system is based on several tightly coupled interrupt
service routines. These are programs which run independent

of one another and independent of any foreground program.

Interrupt service routines are demand-driven. When data is

available, these routines are called directly from the hardware
level. When data is not available, these routines sit idle. No

program intervention (like polling) is ever needed when

using interrupt routines. They support themselves.

Through the use of interrupt service routines, multitasking is
available. While data is collected and deposited by interrupt

routines, a program (any program) can run simultaneously.

This program is the user shell. It runs in the foreground

while the interrupt routines run in the background. Since the

interrupt routines are demand-driven, they get as much CPU
time as needed to service their particular needs. Any time

left over is given to the foreground program. We call this

method of operation demand-driven or nonpreemptive

multitasking. Figure 1 is a block diagram of the data system.

I SOURCE 2

DATA SOURCES

U u I

Z

COIwIPUTER

pAJ_AIACT_Iq
s[]-_

[_TA. ON. OFF

flATA

OEP_Y

OP,&PHIC/d. _I, TA

DIS_3L.AY

DOS

SHELL

Figure 1. Data system block diagram.

This data system performs the same basic functions as any

data system. Data is collected and deposited to a storage

device while giving the user status information. The most

important aspect of this process is ensuring data integrity.

Hardware

On the PC platform, there are two types of interrupts. The

first type is a software interrupt. This type is an instruction

that makes the cpu jump directly to a given routine. The

second type is hardware interrupts. Of these, there are two

varieties. The internal variety is usually confined to the

system or motherboard. These hardware interrupts are

dedicated to interrupting the cpu when catastrophic events

take place. A memory error is a good example of an internal

hardware interrupt. The external variety of hardware
interrupts is found from external devices. Hardware

interrupts are responsible for most of the communication

which occurs between peripheral boards and the motherboard.

A lower part of computer memory is dedicated to what is

called an interrupt vector table. This is where a list of

addresses point to potential interrupt service routines. Much

of this table is filled with addresses DOS needs to perform

routine operations. Some examples of these are keyboard

entry, disk I/O, video services, etc. See Figure 2 for an

example of an interrupt vector table.

131h

TABLE 13Oh

ADDRESS 129h

128h

INTR.

NUMBER

4Bh

FO

DO

18

05

INTR, NUMBER 4Ah

x4

ADDRESS 128h

INTR. LOCATION - F000:1805

event occurs. Of the 3 clocks, we only use clock 0. This

clock is used to drive a hardware interrupt line called IRQ0.

This is the interrupt of highest priority we mentioned
previously.

Whenever clock 0 counts down to 0, an interrupt is posted on

the IRQ0 line. Since the control word responsible for clock

0 is set at 65535, an interrupt occurs at 18.2 hertz. This

number is found by dividing 1192180 by 65535. The system

uses this interrupt to maintain 32-bit time. We use this

interrupt as a trigger for our data system. Figure 3 shows the

relationship between hardware interrupts and interrupt service
routines.

I PORT 2(IRQ3)

PROGRAM

SPACE
NTERRUPT SERV CE

ROUTINE

INTERRUPT SERVICE
ROUTINE

INTERRUPT
VECTOR TABLE

Y

8259A

11
8254(IRQO)

PORT 1](IRQ4)

Figure 2. Interrupt vector table.

There is a chip native to all PCs called the 8259A

programmable interrupt controller. This chip coordinates all

hardware interrupts channeled to the cpu. With this chip,

priority can be assigned to all interrupts. This is necessary,
because some interrupts must have high priority. An

example would be the system clock. It has the highest

priority, because event timing is critical. With this chip,

incoming interrupts can be made available or unavailable to

the cpu. Think of the 8259A as an intelligent switch

between hardware interrupts and the cpu.

Another chip native to all PCs is the 8254 programmable

interval timer. This chip has 3 clocks that are driven by a

crystal oscillator at 1.192 Mhz. Each clock is independently
programmable with a 16-bit word. This word is used as a

countdown timer. Whenever this word counts down to 0, an

Figure 3. Interrupt flow.

Design

Many considerations were made when designing this new

data system. This system had to run on any PC. This
includes all PCs with the 8088, 80186, 80286, and 80386

microprocessors. System memory of not more than 640

kbytes would be available. Easy user installation was a must.

Data throughput would not be high.

Microsoft OS/22 was considered for its multitasking

environment. Unfortunately, it will not run on anything less

than an 80286. It also requires a minimum of 2 megabytes

of memory, a tedious installation procedure, and is not
guaranteed to run on any PC clone.

MicrosoftWindows2 was also considered for its graphic user

interface (GUI). It too must run on a 80286 or better. It

is slow, memory hungry, and is less than intuitive to use.

Installation, although not as bad as OS/2, is quite lengthy.

A multitasking kernel called AMX 3 was considered. It has
no user interface, but does allow for multitasking on all PCs.

It was found to offer an archaic programming interface,

which made it very difficult to program. Bad remarks were

also given AMX from programmers more familiar with the

system.

Another multitasking kernel called OMNIVIEW 4 was

considered. This system does include a programming

interface (API), but there is no documentation. Since the

API consists of approximately 150k of assembler source

code, the author thought it wise to seek other avenues.

Since no operating system or system enhancement seemed to
fit what I was looking for, I decided to write my own

multitasking kernel. It only needed to multitask at most two

comm ports with one foreground program. Although not a

trivial task, it proved a worthwhile effort in better

understanding the inner workings of DOS.

I also decided to write a pull-down window user interface.

A system was needed where the user could access many

variables and processes with a minimum of confusion. Many

commercial DOS programs use this method and are quite

effective.

Programs

As mentioned, this new data system is basically divided into

three parts. The heart of the system is the multitasking
kernel. This is where data is collected, reformatted, and

deposited to disk. It is written entirely in Borland Turbo

Assembled using their Turbo C _ interface structure. This not

only makes this interface clean, it also makes the assembly
code easier to read.

Sitting on top of the kernel is the user interface or shell. It
is here that the user interacts with the system. Variables

needed to drive the kernel are altered here. Information

relating to port assignments and data structure, protocol, and

handshaking can be entered, as well as station weather
information, time, and location. Finally, the graphics

processor is "launched" or run from the shell. All

information driving this graphics processor can be edited
from the shell.

The final program is the graphics processor. It is of the

stand-alone variety. It can be run from the user shell or from

the DOS prompt. The graphics processor reads a file as its
dam source. This file can be read before, during, or after
data collection. Due to the multitasking nature of this

system, the graphics processor can read a data file while it is
being written. To the graphics processor, this is just a file.
This offers the advantage of using the graphics processor to

process data at any time.

Multitasking Kernel

Kernel interrupt service routines

The heart of this data system is contained in the kernel. It is

here that data is captured, verified, and deposited to disk.
The kernel runs in the background independent of any

foreground program. The only direct link to the kernel is via
the user shell discussed in the next section.

For all practical purposes, the kernel consists of two types of
routines. The first type is the interrupt service routines. Of

the six routines, two are dedicated to the comm ports. The

other four routines enable the kernel to write to disk using

DOS services. The second type of kernel routines is general

purpose in nature. These kernel routines either support the
comm port interrupt service routines or it allows for
initialization and de-initialization of the system. Since

assembler routines can be less than intuitive to follow, each

routine from the kernel will be explained in detail. Figure 4

is a block diagram of the kernel.

SYSTEM BUS

] IN'rE_RUPq" SERVICE ROUTINES

GENERAL PURPOSE ROUTINES

Figure 4. Kernel block diagram.

Interrupt service routines comma_int and commb_int are

essentially the same. Each uses its own set of local
variables, but their functions are identical. Each routine

NO

I F! i 1

Figure 5. Comm port interrupt flowchart.

services data coming in from its respective port. Upon an
interrupt, these routines input the current byte latched on the

port. This byte is then saved in a local buffer. What follows

is a series of tests, which prove or disprove data validity.
The extent of these tests is dependent on the state of

variables programmable from the user shell. There are a

total of eight different tests that can be programmed into each

comm port service routine. Figure 5 is a flowchart of the
comm port interrupt service routines.

There are five variables that control data validity for each
comm port. Figure 6 is a pseudo truth table of those

variables and their relation to one another. For this map,

states are on when a given variable has a value greater than

zero. Since this not a true truth table, only eight conditions
or tests are possible.

TLEN

TEND

TNUM

FTX

IdESL rio

UN r't OF TID_0 _1_

UNES OF TI_D
A_D TNUM

UNES OF '1'15'_D

& Mk,_ I"[XT

UNI_I_ OF 'II)ID

UNTIL WI_TCHE D

"1"_, THIN STORE

ON TEND & MI_

IN :N ON I ON

IN)_ ONION

bN _I:FF ON

rlr N D,I C_I

PN ON],

N _F'F'I I;

N IF'F(

N]F'Ir I

 i-I°

UNE_ OF"

klA'rc H E_D

'_ UNE_ OF TL._N

_1 UNCI OF" TENDA, TNU_I UNllL

li_TOH If) _,

["IHEg STORE ON

TBID _ MrqL

a UNIE] OF "nEND,

17 TNUM, At_TCHrn

Figure 6. Pseudo truth table.

The dosidle interrupt service routine is activated whenever

DOS enters an "idle" or "quiet" state. A good example of

this state is when a program waits for keyboard input. When

this state occurs, the software interrupt 28-hex is repeatedly
called by DOS. This particular interrupt service routine is

actually inserted before the original dosidle routine. When

the system goes "idle", a 28-hex interrupt is initiated, and this

particular routine is called. From this routine, the original
dosidle routine is called, and a return is made to this routine.

From here, four checks are made. These checks determine
whether data should be written to disk.

From Figure 7, time is the first check made before data

deposit. At least 6 seconds must have passed since the last

write.Thisvaluewaschosenasacompromisebetweendata
bufferspaceandforegroundupdaterate.Next,thelastwrite
mustbecompleteforacurrentwritetooccur.Datamustbe
availableinthebufferandfinally,thediskmustnotbebusy.
WhenalltheabovecriteriaaremetandDOSisidle,awrite
will occur.

I CALL ORIG. 1INT 28H

NO
B SECONDS

YES
RITE ACTIVE

NO
BUFFER FULL

YES
)ISK BUSY

NO

WRITE DATA

Figure 7. Dosidle interrupt flowchart.

The newdisk interrupt service routine is called whenever

DOS reads or writes to a device. This device must use the

software interrupt 13-hex services. This includes all DOS

standard floppy and hard drives. As with the dosidle routine,
this routine is inserted before the original interrupt 13-hex

routine. The purpose of this routine is simple. It sets a disk

active flag before the original routine is called. When a
return is made from the original routine, the flag is cleared.

This flag is used throughout the kernel. It indicates when the

disk is busy. Figure 8 is a flowchart of the newdisk interrupt

service routine.

The newtime interrupt service routine is called whenever the

8254 timer chip initiates an interrupt. The default rate is

I SET DiSKACTIVE FLAG

I °R'°"IINT 13H

L

I CLEAR DISKACTIVE FLAG

Figure 8. Newdisk interrupt flowchart.

18.2 hertz. As shown, newtime is inserted before the original

interrupt 08-hex routine. The original routine updates a 32-

bit memory location with current time. Newtime is used to
write data to disk and initiate interrupts to comm ports if that

function is enabled. Like the dosidle routine, criteria must be

met before a write can be made. In addition to the four

criteria described in dosidle, another condition must be met.

DOS cannot be busy when a background write is needed.
When in dosidle, DOS is being used to call dosidle, so this

condition need not be checked.

Within newtime, a disk write is made when the 5 criteria are

met. Whether met or not, a variable called wrtime is

decremented if not equal to 0. This variable is used as a
local timer for the kernel. When this variable reaches 0,

enough time has elapsed for a write to be considered. This
variable remains zero until a write occurs. This way, every

time newtime is subsequently entered, a write will be

considered.

The last thing to occur before newtime exit is to check

whether signals or interrupts should be sent to the comm

ports. If they should be sent, the current rate of interrupt is

compared with the current elapsed time from last interrupt.
The current rate of interrupt is a variable altered from the

user shell. See Figure 9 for a flowchart of newtime.

Finally, the last interrupt service routine of this system is
called critical. It replaces the original interrupt 24-hex

routine with a single interrupt return "iret" instruction. The

original routine services critical errors. An example of a
critical error is trying to print to a device that does not exist.

NO

Figure 9.

NO

WRgld£-- I

Newtime interrupt flowchart.

The original critical error routine would halt all programs and

display an obscure message. Critical simply keeps programs
from halting when critical errors occur.

Kernel general purpose routines

Wrtdata is a general purpose routine called from interrupt

service routines newtime and dosidle. Its purpose is to write

data to the chosen disk drive. Before data is written, this
routine must switch to the background PSP and DTA. These

contain DOS environment information necessary for a
background write. After data is written, the file is

committed. This means the directory information defining
that file is updated. In the event of a power failure, all data

will exist in that file. Only data not committed will be lost.

Since data is written every 6 seconds, only a maximum of 6

seconds of data can ever be lost. An active flag variable is
set and reset upon entry and exit from wrtdata. This variable

is used throughout the kernel as a flag. When this flag is set,
DOS is busy writing data. Figure 10 is a flowchart of
wrtdata.

Trigca and trigcb are essentially the same general purpose

routine. Each is dedicated to a user defined comm port.
Upon command from interrupt service routine newtime, these

routines output a designated byte to the chosen port. This
can serve as a signal or trigger to an external device. In the

case of this data system, these routines serve as a periodic
trigger defined from the user shell.

Cmpstrs is a general purpose routine called from both

comma_int and commb_int interrupt service routines.

Cmpstrs tries to find a match between a string of characters

and a buffer. When a match is found, a value of 1 is

returned in the "dl" register. This function is necessary in

completing several of the tests when checking data validity.

Routines forpspdta and bacpspdta both perform the inverse

of each other. Forpspdta switches from the background PSP

and DTA to the foreground PSP and DTA. This is necessary
when control is given back to all foreground programs.

Likewise, bacpspdta switches from the foreground PSP and

DTA to the background PSP and DTA. This is only
necessary when the background routine, wrtdata, writes data
to disk.

Kernel initialization routines

The following routines are called via the user shell. They are

called in the sequence that follows. Their combined purpose

is to start or initialize the data system. See Figure 11 for a
block diagram of initialization routines.

9
I.,ISEI_KGROUND IPSP it DTA ,,]

.J,,

FORWRITE

.L

.L
I o°,,,,rr 'TAI

.L

I USE FORF-_RO_INDIPSP k DTA i

.I,

I UPDATE_ IPOllqT1_

.L

Figure 10. Wrtdata flowchart.

curpspdta saves the current program segment prefix (PSP)
and disk transfer area (DTA). This information is needed

whenever a background disk write is made. The shell and
kernel share the same PSP and DTA. Whenever another

instance of command.corn is run, a new PSP and DTA is

issued. To carry out background disk writes, the PSP and

DTA that curpspdta saves must be used.

initial has two purposes. First, it initializes all data pointers

to their appropriate buffers. Second, it creates the proper

header information pertaining to data type, time type, time

length, and local buffer count. In essence, this routine
initializes all parameters used for buffer manipulation.

I INITIALIZATION]

Figure 11. Initialization block diagram.

indosp simply captures the address of the variable that
]-ndicates whether DOS is busy or not. This address is used

throughout the kernel.

savint saves original interrupt vectors. This includes the

system clock (int 08-hex), the disks (int 013-hex), the
critical error flag (int 024-hex), dosidle (int 028-hex), and

both comm ports.

newint changes all the above interrupt vectors to new
vectors. These vectors now point to our interrupt service

routines.

setcomms sets up both comm ports for interrupt-driven

serv ice.

Kernel de-initialization routines

The following routines are also called via the user shell.

They are called in the sequence which follows. Their

combined purpose is to stop or de-initialize the data system.

See Figure 12 for a block diagram of de-initialization

routines.

rsetcomms disables both comm ports from interrupt-driven

service.

I DE-INITIALIZATION I

Figure 12. De-initialization routines.

_resint changes all data system interrupt vectors back to their
original state.

_dumpbuff empties the data queue of remaining data. This
data is written to disk.

User Shell

Program structure

The user shell is written in the "C" programming language
and is designed in a top down fashion. Figure 13 is a tree
diagram of the shell structure. There are three levels to this

structure enclosed in the dotted line. The first level is

responsible for initializing, running, and de-initializing the

shell. The second level dispatches keyboard commands. The

third level runs alternate programs, starts and stops the data
system, manipulates the windows, and manipulates all

variables. The following is a brief description of each level.

Level 1

During initialization, many things occur. Filenames given

on the command line are opened and video type is

determined. Windows and their supporting data structures
are read in. Keyboard setup buffers are read in and stored.
Finally, window data structures are further enhanced for

proper operation.

The shell begins during the run phase of level 1. This will
be explained in level 3.

De-initialization prepares for proper system shutdown. If

the data system is active, it is switched off, then any
remaining data is written. All parameters previously read in
are saved to disk.

......................... /

Figure 13. Shell structure.

Level 2

This level is managed by the keyboard dispatcher. This

dispatcher accepts keyboard input and performs the
appropriate action. These actions are described in level 3.

Level 3

Window manipulation is responsible for two things.
Cursor movement is first achieved here, followed by
window display and restore.

Under the category of variable manipulation, all variables

associated with the shell are available for update. This

includes variables that drive the kernel, variables that support
the comm ports, variables that supplement the data stream,

and variables that initialize the graphics processor.

The data system is turned on and off through the shell.

When turned on, a file is opened for networked read and

write. The kernel is then initialized for interrupt-driven
service. When the system is turned off, the reverse occurs.

Finally, the DOS category is responsible for running another

version of itself. This is done to run DOS programs from the

command line or run DOS programs directly from within the

shell. Two examples of the later are the graphics processor

and the vi editor. The vi editor is used to edit parameters
found in a given graphics processor parameter file. The

graphicsprocessor is used to process incoming data

graphically.

Graphics Processor

Program philosophy

Like the user shell, the graphics processor is written in the

"C" programming language and is designed in a top down
fashion. Since it is a stand-alone program, it can be run

independently of the user shell. For this discussion, we will

reference the graphics processor when launched from the

shell.

Like any data processing program, the graphics processor is

responsible for reading and displaying data. Also, like any

data processing package, the graphics processor enables the
user to apply editing and smoothing functions to data.

However, unlike most data processing programs, this

processor does all the above via a graphic display. Figure 14

is a tree diagram of the program structure.

................I

..............

L 1 I

Figure 14. Graphics processor structure.

Program structure

The graphics processor is structured into four levels. The
first level is very similar to that of the shell. It is here that

initialization, running, and de-initialization of the graphics

processor occur. The second level is solely responsible for

reading the appropriate data file. The third level takes that
data and decodes it. Finally, decoded data is displayed

graphically in level 4. During this display, the user is
allowed to manipulate the data via graphic controls. The

following is a brief description of each level.

Level 1

The graphics processor is a general purpose program. It can
be customized by the user to display and process data of

choice. This is accomplished through a graphics parameter

file. This file is ascii and contains many graphics primitives

that describe to the processor what needs to be done. During

initialization, this file is read in, and many variables

supporting those graphics primitives are initialized.

Once initialization is complete, the graphics processor is
started. It is here that data is read in and displayed. After

the user exits from the processor, a de-initialization

procedure occurs. All files formally opened are closed, and
a return is made to the shell or DOS.

Level 2

This level has one function. The chosen data file is read in.

This can be a data file currently being written by the kernel,

or it can be any disk file of the correct format. This format
is called the Type Length Data (TLD) format. Data is

recorded in logical blocks defined by the user. As seen in

Figure 15, this format has three distinct fields.

16 BITS

16 BITS

"LENGTH" BYTES

TYPE

LENGTH

DATA

TYPE

LENGTH

DATA

Figure 15. TLD format.

Thefirst fieldis a 16-bitwordcalled"type." Thisis a
numberchosenbytheuser,to representdata.Thesecond
fieldisa16-bitwordcalled"length."Thisis thenumberof
bytesfoundin thisblockof data.Thethirdfieldis the
actualdata.Theamountof datahereis"length"inbytes.

Thisdatastructureis a modifiedlinkedlist. It enablesa
programto quicklyreadthrougha datafile in searchof a
particulardata"type."Since"type"isa 16-bitword,there
are65,536datatypesavailableatanygiventime.Likewise,
"length"isalsoa 16-bitword.Thismeansadatablockcan
beupto65,536bytesin length.TheTLDformatlendsitself
toflexibility.Whendatabecomesavailable,it caninserted
intothedatastreamwithoutregardtootherdata.Theuser
onlyneedstokeeptrackofdata"type"numbers.

Level 3

Once data is read in, it must be decoded. It is here that data

"type" is matched to a particular decoding scheme. Data is
decoded and placed into a structure. This structure is used

throughout the program. It contains many variables,

including temperature, pressure, relative humidity, time, wind

speed, etc. These variables are updated every time a data

"type" is read in. Those variables not found in a particular
data "type" are initialized to an "empty" state.

Level 4

The above data structure is passed to a part of the program

that displays data. Although there are many varieties of
display that can be defined using the graphics parameter file,

every display has one of four filters it must pass through.

The EDIT filter allows the user full command of the

processor. With this filter turned on, one can view data via

a graphics screen. Zooming in on data is possible using the
keyboard cursor. Finally, bad data can be edited out also
using the cursor controls.

The three filters METCM, METB2, and METB3 are used

to create coded messages. The same display is shown when
viewing, with the superposition of zone level lines when the

y-axis is expressed as height. Zooming is still allowed but
editing is not. The final message is not written until the
graphics processor is exited.

Coded Messages

Meteorological (MET) messages are a condensed form of

current atmospheric conditions. For this system, a rising
balloon is tracked, telemetry data is collected, and a series of

calculations are made. For MET messages, the atmosphere

10

ZONE

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

HEIGHT

IN METERS

20000

19000

18000

17000

16000

15000

14000

13000

12000

11000

10000

9000

8000

7000

6000

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

200

SURFACE

Figure 16. METCM zone distribution.

is divided into layers or zones. Each zone is a particular

thickness, depending on the MET message used. See Figure

16 for an example of zone distribution.

METCM

For the Standard Artillery Computer Meteorological Message

(METCM), there are 26 zones of interest. In each zone,
4 calculations are made. They are mean wind speed, mean

wind direction, mean virtual temperature, and mean pressure.

As can be expected, the mean values for each calculation are

found by taking the average of all readings within a zone.

Wind speed and direction are first combined to form vectors
in the x and y plane. For the expressions

x -- r cos O, y --- r sin O,

where

r = wind speed

0 = wind direction,

the values of x and y are calculated and summed for each

zone. Their average is then used to find the mean wind

speed or magnitude and the mean wind direction or angle.

Before a mean virtual temperature can be found, the current

values of temperature must be converted to virtual

temperature. This is simply the conversion of temperature in
centigrade to temperature in kelvin. The constant 273.16 is
first added to each value of temperature before the sum and

subsequent average is made across a zone.

METB2

For the Standard Ballistic Meteorological Message (Surface

to Air - METB2), there are 15 zones of interest. Again,

there are 4 calculations made for each zone. They are
ballistic wind direction, ballistic wind speed, ballistic

temperature, and ballistic density. Instead of finding mean
values, as with METCM, these calculations are dependant on

atmospheric weighting factors and previous calculations.

As in the METCM, the mean wind speed and direction are

found for each zone using vector notation. Virtual

temperature is found using the following equations:

where

/amp

virtual temp= [/apsp__e] '
1-E

ktmp = current temperature in celsius + 273.16
E = 0.379

pres = current pressure in millibars

lapse = lapse rate

[J ..-,_ .c 1
lapse rate = rh • A • eL _ ÷ m._ I

rh = relative humidity

A = 0.0611

B = 7.5
C = 2.3025

D = 237.3

temp = current temperature in celsius.

Density is found using the following equation:

F • pres
density --

virtual terap

where

F = 348.38.

A mean virtual temperature and mean density are then

calculated for each zone. Following this, each value is

converted to a percent-standard. For each zone, there is a

known standard temperature (in kelvin) and density (in

gm/m 3). These standard values are divided into the mean
values to determine a percentage of the following form:

percent standard --
mean value • 100

standard value

At this point, four tables are created containing mean wind
x vector, mean wind y vector, standard temperature, and

standard density for every zone. What follows is matrix

multiplication using the four tables versus four matrices of

weighting factors.

These weighting factors are used to determine cumulative
values for each zone. For example, the METB2 has 15

zones. For each zone, a number (using virtual temperature)

represents the cumulative effects of temperature up to and

including that particular zone. Since there are 15 zones,
there are 15 numbers, each representative up to their

11

particularzone.

Beforethecumulativeeffectsateachzonearecalculated,the
followingmatrixmultiplicationmustoccur:

WhereK i represents a diagonal matrix of zone values, and

MIj represents an upper diagonal matrix of weighting factors.

The matrix product will be in QIJ"

kl 0 0 o

o oo

oo o

0 0 0 k

roll /nil m13 mla

0 m= a53 m_

0 0 m33 m_,

0 0 0 m,=

References

1. PC is a trademark of International Business Machines
Corp.

2. OS/2 and Windows are trademarks of the Microsoft Corp.

3. AMX is a trademark of Kaeak LTD.

4. OMNIVIEW is a trademark of Sunny Hill Software.

5. Turbo Assembler and Turbo C are trademarks of Borland
International.

To find the cumulative effects at each zone, the following
summation must occur:

It is these values of 7,1 that form the final coded message.

METB3

For the Standard Ballistic Meteorological Message (Surface
to Surface - METB3), all processes are identical to those

used with METB2. The only difference is each message

uses a unique set of weighting factors for winds, temperature,
and density.

Concluding Remarks

This new data system has been tested in the field and does

work as designed. Due to its modular construction, all or

parts of this system have been used to develop three
subsequent data systems based on the PC architecture. As

was found, the PC serves as a powerful and inexpensive

computer on which to base a low rate data system.

12

Report Documentation Page

1, Report No,

NASA _I-4232

2. Government Accession No.

4. Title and Subtitle

A Personal Computer-Based, Multitasking Data

3. Recipient's Catalog No.

5. Report Date

September 1990

Acquisition System 6.

7. Author(s)

Steven A. Bailey

9. Pe#orming Organization Name and Address

NASA Wallops Flight Facility

Wallops Island, VA 23337

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washingtion, DC 20546-0001

Performing Organization Code

972

8. Pedorming Organization Report No.

90B00133

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Steven A. Bailey: Wallops Flight Facility, Wallops Island, Virginia.

16. Abstract

A multitasking, data acquisition system has been written to simultaneously

collect meteorological radar and telemetry data from two sources. This system

is based on the personal computer (PC) architecture. Data is collected via two

assynchronous serial ports and is deposited to disk. The system is written in

both the "C" programming language and assembler. It consists of three parts: a

multitasking kernel for data collection, a shell with pull down windows as user

interface, and a graphics processor for editing data and creating coded messages.

An explanation of both system principles and program structure is presented.

17. Key Words (Suggested by Author(s))

Multitasking

Data acquisition system
PC

18. Distribution Statement

Unclassified--Unlimited

Subject Category 61

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of pages

16

22. Price

A03

NASA FORM 1626 OCT 86

NASA-Lat_]ey, 1990

